metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[[aqua(5-nitrobenzene-1,2,3-tricarboxylato- κO^1)copper(II)]-di- μ -aqua-[diaquasodium]-di- μ -aqua] tetrahydrate]

Yong-Jie Ding^a and Chun-Xiang Zhao^{b*}

^aDepartment of Chemistry, East China Normal University, Shanghai 200062, People's Republic of China, and ^bDepartment of Chemistry, Zhoukou Normal University, Zhoukou 466001, People's Republic of China Correspondence e-mail: chunxiangzhao@163.com

Received 25 December 2009; accepted 5 January 2010

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.006 Å; R factor = 0.047; wR factor = 0.133; data-to-parameter ratio = 13.2.

In the heteronuclear coordination polymer, $\{[CuNa(C_9H_2-NO_8)(H_2O)_7]\cdot 4H_2O\}_n$, the Cu^{II} atom is coordinated by six O atoms from five water molecules and one 5-nitrobenzene-1,2,3-tricarboxylate ligand in a slightly distorted octahedral geometry. The Na⁺ cation is surrounded by six water molecules in an irregular trigonal-prismatic geometry. The Cu and Na atoms are connected by water bridges, forming an infinite chain. $O-H\cdots O$ hydrogen bonds involving the coordinated and uncoordinated water molecules connect the chains into a three-dimensional network.

Related literature

For general background to the possible applications of metal coordination polymers as microporous hosts for absorption or as catalytic materials, see: Cheng *et al.* (2004); Yaghi & Li (1995).

Experimental

 $\begin{array}{ll} Crystal \ data \\ [CuNa(C_9H_2NO_8)(H_2O)_7]\cdot 4H_2O & a = 6.6480 \ (13) \ \text{\AA} \\ M_r = 536.82 & b = 13.124 \ (3) \ \text{\AA} \\ Triclinic, \ P\overline{1} & c = 13.531 \ (3) \ \text{\AA} \end{array}$

$\alpha = 63.46 \ (3)^{\circ}$
$\beta = 79.17 \ (4)^{\circ}$
$\gamma = 82.13 \ (3)^{\circ}$
V = 1035.5 (4) Å ³
Z = 2

Data collection

Bruker APEXII area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 2005)
$T_{\min} = 0.743, T_{\max} = 0.791$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.047$ $wR(F^2) = 0.133$ S = 1.023696 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O1W−H2W····O4 ⁱ	0.84	2.06	2.883 (4)	166
$O1W-H1WO5^{ii}$	0.84	2.19	2.932 (4)	148
$O2W - H4W \cdot \cdot \cdot O3$	0.84	1.94	2.706 (4)	151
$O2W - H3W \cdot \cdot \cdot O6W^{iii}$	0.84	1.91	2.741 (4)	169
$O3W - H6W \cdot \cdot \cdot O4W^{i}$	0.84	2.09	2.863 (4)	153
$O3W - H5W \cdot \cdot \cdot O4$	0.84	2.01	2.825 (4)	164
$O4W - H8W \cdot \cdot \cdot O3W^{iv}$	0.84	2.11	2.868 (4)	149
$O4W - H7W \cdot \cdot \cdot O3^{v}$	0.84	2.12	2.902 (4)	155
$O5W-H10WO1^{iii}$	0.84	2.60	3.174 (4)	127
$O5W-H10W\cdots O5$	0.84	2.05	2.778 (4)	145
O5W−H9W···O6 ^{vi}	0.84	1.89	2.711 (3)	166
$O6W-H12W\cdots O5W$	0.84	2.00	2.810 (4)	161
$O6W-H11W\cdots O7^{vi}$	0.84	1.91	2.716 (4)	160
$O7W - H14W \cdot \cdot \cdot O2W^{v}$	0.84	1.98	2.788 (4)	160
$O7W-H13W\cdots O7$	0.84	1.87	2.657 (4)	156
$O8W - H16W \cdot \cdot \cdot O2W^{v}$	0.84	1.85	2.679 (4)	171
$O8W-H15W\cdots O6W$	0.84	1.95	2.774 (4)	167
$O9W-H18WO5^{i}$	0.84	1.82	2.647 (4)	168
$O9W - H17W \cdot \cdot \cdot O6$	0.84	1.99	2.823 (3)	175
$O10W - H19W \cdot \cdot \cdot O5W$	0.84	1.85	2.674 (4)	166
$O10W - H20W \cdot \cdot \cdot O6^{i}$	0.84	1.88	2.704 (3)	167
$O11W - H22W \cdot \cdot \cdot O3W^{v}$	0.84	1.85	2.670 (4)	165
$O11W - H21W \cdots O4^{i}$	0.84	1.98	2.776 (4)	158

Mo $K\alpha$ radiation $\mu = 1.17 \text{ mm}^{-1}$

 $0.27 \times 0.26 \times 0.21 \text{ mm}$

5466 measured reflections 3696 independent reflections

3113 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

T = 295 K

 $R_{\rm int}=0.021$

280 parameters

 $\Delta \rho_{\rm max} = 0.76 \text{ e} \text{ Å}^{-1}$

 $\Delta \rho_{\rm min} = -0.76 \text{ e} \text{ Å}^{-3}$

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) -x + 2, -y + 2, -z + 1; (iii) -x + 1, -y + 1, -z + 2; (iv) x + 1, y + 1, z; (v) x, y + 1, z; (vi) x + 1, y, z.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *Mercury* (Macrae *et al.*, 2006); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008).

The authors gratefully acknowledge financial support by the Scientific Research Innovation Foundation for youth teachers of Zhoukou Normal University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2712).

References

Bruker (2005). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Cheng, D.-P., Khan, M.-A. & Houser, R. P. (2004). Cryst. Growth Des. 4, 599–604.

Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457. Sheldrick, G. M. (2005). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. Yaghi, O. M. & Li, H. (1995). Nature (London), 378, 703–706.

Acta Cryst. (2010). E66, m132-m133 [doi:10.1107/S1600536810000401]

catena-Poly[[[aqua(5-nitrobenzene-1,2,3-tricarboxylato- κO^1)copper(II)]-di- μ -aqua-[diaquasodi-um]-di- μ -aqua] tetrahydrate]

Y.-J. Ding and C.-X. Zhao

Comment

Recently, there has been much interest in the synthesis of metal coordination polymers, due to their possible application as microporous hosts for absorption or even as catalytic materials (Yaghi *et al.*, 1995; Cheng *et al.*,2004). Herein, we report a new heteronuclear metal coordination polymer with the tricarboxylates, 5-Nitrobenzene-1,2,3-tricarboxylicacid (NBA) as the ligand, the copper (II) and sodium (I) as the metal ions.

As can be seen from the crystal structure in Fig.1, Cu and Na are connected *via* μ -*O*, *O*' coordination of water molecules, which structure is repeating unit along *a* axis, forming one-dimensional infinite chains, which chains along the *a* axis is built up through coordination between NBA, a part of water molecules and Cu(II), Na(I) (Fig.2). Through the forming of hydrogen bonds between chains and water molecules of the interchain, three-dimensional supermolecular structure is formed. The different chains are linked by an extensive hydrogen-bonding network (Table 1, Fig.3), through oxygen atoms of carboxylate and water molecule. Each of the water molecules has at least one hydrogen-bonding interaction, this leads to the formation of a stable three dimensional supramolecular structure.

Experimental

5-Nitrobenzene-1,2,3-tricarboxylic acid (0.051 g, 0.2 mmol) was added to a solution of copper chloride (0.027 g, 0.2 mmol) (20 mL), the resulting mixture was treated with a solution of NaOH until the pH value come rise to be about 8. The mixture was then stirred continuously for 6 h, and the filtrate was kept in conical flask for about 30 days and blue block crystals were obtained from the solution, dried in vacuum. Yield: 67.6%. Crystal of the title compound suitable for single-crystal X-ray diffraction was selected directly from the sample as prepared.

Refinement

All C-bound H atoms were placed in calculated positions, with C—H = 0.93Å for phenyl H, and refined as riding, with $U_{iso}(H) = 1.2U_{eq}(C)$ for phenyl H. The water H-atoms were placed in chemically sensible positions on the basis of hydrogen bonding but were not refined, with $U_{iso}(H) = 1.5U_{eq}(O)$.

Figures

Fig. 1. The molecular structure of (NBA) (thermal ellipsoids are shown at 30% probability levels). [Symmetry codes: (i) 1 + x, y, z; (ii) -1 + x, y, z]

Fig. 2. The molecular packing diagram along the *a* axis (the NBA and water molecules have been omitted for clarity)

Fig. 3. Three-dimensional supermolecular structure is built up through hydrogen bond

catena-Poly[[[aqua(5-nitrobenzene-1,2,3-tricarboxylato- κO¹)copper(II)]-di-μ-aqua-[diaquasodium]-di-μ-aqua] tetrahydrate]

Crystal data

[CuNa(C9H2NO8)(H2O)7]·4H2O	Z = 2
$M_r = 536.82$	F(000) = 554
Triclinic, P1	$D_{\rm x} = 1.722 \ {\rm Mg \ m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 6.6480 (13) Å	Cell parameters from 2416 reflections
b = 13.124(3) Å	$\theta = 2.9 - 27.7^{\circ}$
c = 13.531 (3) Å	$\mu = 1.17 \text{ mm}^{-1}$
$\alpha = 63.46 \ (3)^{\circ}$	T = 295 K
$\beta = 79.17 \ (4)^{\circ}$	Block, blue
$\gamma = 82.13 (3)^{\circ}$	$0.27\times0.26\times0.21~mm$
$V = 1035.5 (4) \text{ Å}^3$	

Data collection

Bruker APEXII area-detector diffractometer	3719 independent reflections
Radiation source: fine-focus sealed tube	3113 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
ϕ and ω scan	$\theta_{\text{max}} = 25.2^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 2005)	$h = -7 \rightarrow 7$
$T_{\min} = 0.743, T_{\max} = 0.791$	$k = -15 \rightarrow 15$
5466 measured reflections	$l = -12 \rightarrow 16$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map

$R[F^2 > 2\sigma(F^2)] = 0.047$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.133$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0826P)^2 + 0.906P]$ where $P = (F_o^2 + 2F_c^2)/3$
3696 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
280 parameters	$\Delta \rho_{\text{max}} = 0.76 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.76 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional	atomic	coordinates	and is	otropic	or ed	auivalent	isotror	oic dis	placement	parameters	$(\AA^2$)
1		000.0000000		011.0010	0. 00	100000000000000000000000000000000000000	1001.00		p		(/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu1	0.45974 (6)	1.11126 (4)	0.67569 (3)	0.02613 (17)
Na1	0.9245 (2)	1.21836 (13)	0.62390 (12)	0.0355 (4)
N1	0.1276 (5)	0.5042 (3)	1.1324 (2)	0.0300 (7)
C1	0.2949 (5)	0.8902 (3)	0.8445 (3)	0.0233 (7)
C2	0.2868 (5)	0.7638 (3)	0.8775 (3)	0.0224 (7)
C3	0.3519 (5)	0.7198 (3)	0.7989 (3)	0.0209 (7)
C4	0.3514 (5)	0.6022 (3)	0.8333 (3)	0.0219 (7)
C5	0.2859 (5)	0.5315 (3)	0.9441 (3)	0.0238 (7)
Н5	0.2926	0.4528	0.9687	0.029*
C6	0.2110 (5)	0.5782 (3)	1.0174 (3)	0.0246 (7)
C7	0.2114 (5)	0.6939 (3)	0.9862 (3)	0.0240 (7)
H7	0.1620	0.7239	1.0374	0.029*
C8	0.4157 (5)	0.7967 (3)	0.6777 (3)	0.0217 (7)
C9	0.4168 (5)	0.5492 (3)	0.7518 (3)	0.0255 (8)
01	0.1623 (5)	0.4011 (2)	1.1654 (2)	0.0438 (7)
O2	0.0221 (4)	0.5489 (3)	1.1883 (2)	0.0424 (7)
O3	0.5154 (4)	0.4541 (2)	0.7880 (2)	0.0350 (6)
O4	0.3646 (4)	0.6026 (2)	0.6569 (2)	0.0322 (6)
O5	0.5992 (3)	0.7895 (2)	0.6373 (2)	0.0279 (5)
O6	0.2773 (3)	0.8631 (2)	0.62482 (19)	0.0253 (5)
07	0.1643 (4)	0.9349 (2)	0.8958 (2)	0.0378 (7)
08	0.4354 (3)	0.94091 (19)	0.76839 (19)	0.0239 (5)
O1W	1.0173 (5)	1.3157 (3)	0.4326 (3)	0.0583 (9)
H1W	1.1316	1.3136	0.3943	0.087*

H2W	0.9188	1.3422	0.3956	0.087*
O2W	0.3871 (5)	0.2405 (2)	0.8712 (2)	0.0480 (8)
H3W	0.3277	0.2063	0.9367	0.072*
H4W	0.4314	0.2983	0.8694	0.072*
O3W	0.2499 (4)	0.4492 (2)	0.5859 (2)	0.0413 (7)
H5W	0.2851	0.4832	0.6193	0.062*
H6W	0.2712	0.4938	0.5177	0.062*
O4W	0.8268 (4)	1.3977 (3)	0.6357 (2)	0.0457 (7)
H7W	0.7512	1.3945	0.6941	0.069*
H8W	0.9337	1.4228	0.6390	0.069*
O5W	0.8772 (4)	0.8670 (2)	0.7141 (2)	0.0342 (6)
H9W	1.0052	0.8651	0.6965	0.051*
H10W	0.8229	0.8171	0.7068	0.051*
O6W	0.7667 (4)	0.8945 (3)	0.9121 (2)	0.0416 (7)
H11W	0.8793	0.9089	0.9212	0.062*
H12W	0.7799	0.8737	0.8607	0.062*
O7W	0.1910 (4)	1.1559 (2)	0.7608 (2)	0.0322 (6)
H13W	0.1805	1.0929	0.8175	0.048*
H14W	0.2254	1.1929	0.7914	0.048*
O8W	0.6440 (4)	1.1187 (2)	0.7809 (2)	0.0304 (6)
H15W	0.6707	1.0528	0.8295	0.046*
H16W	0.5749	1.1599	0.8095	0.046*
O9W	0.2728 (4)	1.0955 (2)	0.5785 (2)	0.0277 (5)
H18W	0.2966	1.1361	0.5094	0.041*
H17W	0.2814	1.0266	0.5904	0.041*
O10W	0.7342 (4)	1.0795 (2)	0.5925 (2)	0.0275 (5)
H19W	0.7623	1.0126	0.6388	0.041*
H20W	0.7367	1.0866	0.5275	0.041*
O11W	0.5012 (4)	1.2786 (2)	0.5697 (2)	0.0329 (6)
H21W	0.5259	1.3005	0.5003	0.049*
H22W	0.4304	1.3288	0.5857	0.049*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0215 (3)	0.0263 (3)	0.0308 (3)	-0.00127 (17)	-0.00157 (18)	-0.0134 (2)
Nal	0.0309 (8)	0.0395 (9)	0.0336 (8)	-0.0038 (7)	-0.0005 (6)	-0.0146 (7)
N1	0.0234 (16)	0.0362 (18)	0.0270 (16)	-0.0065 (13)	-0.0033 (13)	-0.0094 (14)
C1	0.0191 (17)	0.0243 (17)	0.0272 (18)	0.0004 (14)	-0.0049 (14)	-0.0115 (15)
C2	0.0163 (16)	0.0238 (17)	0.0279 (18)	-0.0009 (13)	-0.0026 (13)	-0.0121 (14)
C3	0.0101 (15)	0.0242 (17)	0.0283 (18)	0.0014 (12)	-0.0050 (13)	-0.0112 (14)
C4	0.0138 (16)	0.0239 (17)	0.0284 (18)	0.0013 (13)	-0.0054 (13)	-0.0114 (14)
C5	0.0200 (17)	0.0225 (17)	0.0286 (18)	0.0001 (13)	-0.0059 (14)	-0.0103 (14)
C6	0.0156 (16)	0.0294 (19)	0.0251 (18)	-0.0001 (14)	-0.0051 (13)	-0.0081 (15)
C7	0.0187 (17)	0.0280 (18)	0.0277 (18)	0.0018 (14)	-0.0023 (14)	-0.0156 (15)
C8	0.0182 (17)	0.0216 (16)	0.0286 (18)	-0.0023 (13)	-0.0015 (14)	-0.0141 (14)
C9	0.0183 (17)	0.0278 (18)	0.032 (2)	-0.0085 (14)	0.0041 (14)	-0.0158 (16)
01	0.0474 (18)	0.0309 (16)	0.0384 (16)	-0.0047 (13)	-0.0023 (13)	-0.0029 (12)

02	0.0423 (17)	0.0481 (17)	0.0325 (15)	-0.0075 (14)	0.0089 (13)	-0.0178 (14)
O3	0.0375 (15)	0.0285 (14)	0.0415 (15)	0.0052 (12)	-0.0052 (12)	-0.0193 (12)
O4	0.0358 (15)	0.0358 (14)	0.0275 (14)	-0.0040 (12)	-0.0032 (11)	-0.0161 (12)
05	0.0168 (12)	0.0343 (14)	0.0294 (13)	-0.0004 (10)	0.0008 (10)	-0.0127 (11)
06	0.0199 (12)	0.0275 (13)	0.0253 (12)	0.0016 (10)	-0.0047 (10)	-0.0090 (10)
07	0.0351 (15)	0.0314 (14)	0.0463 (16)	-0.0050 (12)	0.0122 (12)	-0.0225 (13)
08	0.0199 (12)	0.0218 (12)	0.0275 (13)	-0.0024 (9)	0.0004 (10)	-0.0095 (10)
O1W	0.0451 (18)	0.070 (2)	0.0423 (18)	0.0258 (16)	-0.0035 (14)	-0.0179 (16)
O2W	0.066 (2)	0.0372 (16)	0.0431 (17)	-0.0126 (15)	0.0103 (15)	-0.0239 (14)
O3W	0.0445 (17)	0.0404 (16)	0.0471 (17)	0.0023 (13)	-0.0078 (13)	-0.0270 (14)
O4W	0.0373 (16)	0.060 (2)	0.0482 (17)	-0.0100 (14)	-0.0011 (13)	-0.0305 (16)
O5W	0.0208 (13)	0.0348 (14)	0.0501 (17)	0.0011 (11)	-0.0051 (11)	-0.0219 (13)
O6W	0.0340 (15)	0.0517 (18)	0.0388 (16)	-0.0006 (13)	-0.0044 (12)	-0.0202 (14)
O7W	0.0282 (14)	0.0322 (14)	0.0372 (14)	-0.0002 (11)	0.0014 (11)	-0.0187 (12)
O8W	0.0329 (14)	0.0314 (14)	0.0302 (14)	-0.0012 (11)	-0.0060 (11)	-0.0159 (11)
O9W	0.0288 (13)	0.0267 (13)	0.0274 (13)	-0.0017 (10)	-0.0054 (10)	-0.0111 (11)
O10W	0.0232 (12)	0.0300 (13)	0.0282 (13)	0.0018 (10)	-0.0005 (10)	-0.0138 (11)
O11W	0.0394 (15)	0.0237 (13)	0.0310 (14)	-0.0019 (11)	0.0016 (11)	-0.0104 (11)

Geometric parameters (Å, °)

Cu1—O8	2.028 (2)	C8—O5	1.249 (4)
Cu1—O11W	2.040 (3)	C8—O6	1.260 (4)
Cu1—O10W	2.052 (2)	C9—O4	1.247 (4)
Cu1—O9W	2.061 (2)	C9—O3	1.256 (4)
Cu1—O8W	2.086 (2)	O1W—H1W	0.8400
Cu1—O7W	2.098 (3)	O1W—H2W	0.8399
Na1—O1W	2.318 (4)	O2W—H3W	0.8400
Na1—O4W	2.422 (3)	O2W—H4W	0.8398
Na1—O8W	2.529 (3)	O3W—H5W	0.8401
Na1—O10W	2.574 (3)	O3W—H6W	0.8398
Na1—O7W ⁱ	2.593 (3)	O4W—H7W	0.8401
Na1—O9W ⁱ	2.770 (3)	O4W—H8W	0.8401
N1	1.222 (4)	O5W—H9W	0.8401
N101	1.224 (4)	O5W—H10W	0.8400
N1—C6	1.464 (5)	O6W—H11W	0.8399
C1—O8	1.254 (4)	O6W—H12W	0.8400
C1—O7	1.256 (4)	O7W—Na1 ⁱⁱ	2.593 (3)
C1—C2	1.519 (5)	O7W—H13W	0.8400
C2—C7	1.378 (5)	O7W—H14W	0.8399
C2—C3	1.400 (5)	O8W—H15W	0.8399
C3—C4	1.400 (5)	O8W—H16W	0.8399
С3—С8	1.505 (5)	O9W—Na1 ⁱⁱ	2.769 (3)
C4—C5	1.386 (5)	O9W—H18W	0.8398
C4—C9	1.521 (5)	O9W—H17W	0.8400
C5—C6	1.372 (5)	O10W—H19W	0.8398
С5—Н5	0.9300	O10W—H20W	0.8395
С6—С7	1.382 (5)	O11W—H21W	0.8400

С7—Н7	0.9300	O11W—H22W	0.8401
O8—Cu1—O11W	174.07 (9)	C2—C3—C8	121.4 (3)
O8—Cu1—O10W	89.57 (10)	C5—C4—C3	119.6 (3)
O11W—Cu1—O10W	85.25 (11)	C5—C4—C9	118.6 (3)
O8—Cu1—O9W	85.27 (10)	C3—C4—C9	121.8 (3)
O11W—Cu1—O9W	92.50 (11)	C6—C5—C4	119.6 (3)
O10W—Cu1—O9W	97.07 (10)	С6—С5—Н5	120.2
O8—Cu1—O8W	91.76 (10)	С4—С5—Н5	120.2
O11W—Cu1—O8W	90.54 (11)	C5—C6—C7	122.0 (3)
O10W—Cu1—O8W	83.80 (10)	C5—C6—N1	119.5 (3)
O9W—Cu1—O8W	176.89 (10)	C7—C6—N1	118.5 (3)
O8—Cu1—O7W	94.30 (10)	C2—C7—C6	118.5 (3)
O11W—Cu1—O7W	91.04 (11)	С2—С7—Н7	120.8
O10W—Cu1—O7W	174.87 (10)	С6—С7—Н7	120.8
O9W—Cu1—O7W	86.61 (10)	O5—C8—O6	125.2 (3)
O8W—Cu1—O7W	92.71 (10)	O5—C8—C3	118.1 (3)
O8—Cu1—Na1	118.29 (8)	O6—C8—C3	116.7 (3)
O11W—Cu1—Na1	59.92 (9)	O4—C9—O3	126.4 (3)
O10W—Cu1—Na1	49.22 (8)	O4—C9—C4	117.4 (3)
O9W—Cu1—Na1	134.47 (8)	O3—C9—C4	116.2 (3)
O8W—Cu1—Na1	48.05 (8)	C1—O8—Cu1	128.3 (2)
O7W—Cu1—Na1	125.72 (8)	Na1—O1W—H1W	128.5
O1W—Na1—O4W	90.19 (12)	Na1—O1W—H2W	115.0
O1W—Na1—O8W	146.32 (13)	H1W—O1W—H2W	114.4
O4W—Na1—O8W	91.74 (11)	H3W—O2W—H4W	104.9
O1W—Na1—O10W	89.56 (13)	H5W—O3W—H6W	105.6
O4W—Na1—O10W	134.16 (11)	Na1—O4W—H7W	116.6
O8W—Na1—O10W	65.55 (9)	Na1—O4W—H8W	107.4
O1W—Na1—O7W ⁱ	121.61 (12)	H7W—O4W—H8W	101.9
O4W—Na1—O7W ⁱ	93.88 (11)	H9W—O5W—H10W	112.6
O8W—Na1—O7W ⁱ	91.80 (9)	H11W—O6W—H12W	112.2
O10W—Na1—O7W ⁱ	124.37 (10)	Cu1—O7W—Na1 ⁱⁱ	104.30 (11)
O1W—Na1—O9W ⁱ	76.07 (10)	Cu1—O7W—H13W	97.3
O4W—Na1—O9W ⁱ	139.84 (11)	Na1 ⁱⁱ —O7W—H13W	118.8
O8W—Na1—O9W ⁱ	120.44 (10)	Cu1—O7W—H14W	107.2
O10W—Na1—O9W ⁱ	84.04 (8)	Na1 ⁱⁱ —O7W—H14W	127.7
O7W ⁱ —Na1—O9W ⁱ	64.18 (8)	H13W—O7W—H14W	97.3
O1W—Na1—O11W	84.16 (11)	Cu1—O8W—Na1	94.13 (10)
O4W—Na1—O11W	74.72 (10)	Cu1—O8W—H15W	110.2
O8W—Na1—O11W	64.06 (9)	Na1—O8W—H15W	118.7
O10W—Na1—O11W	59.67 (8)	Cu1—O8W—H16W	105.0
O7W ⁱ —Na1—O11W	152.36 (9)	Na1—O8W—H16W	114.6
O9W ⁱ —Na1—O11W	138.74 (9)	H15W—O8W—H16W	111.7
O1W—Na1—Cu1	109.05 (11)	Cu1—O9W—Na1 ⁱⁱ	99.58 (10)
O4W—Na1—Cu1	101.24 (9)	Cu1—O9W—H18W	116.8
O8W—Na1—Cu1	37.82 (6)	Na1 ⁱⁱ —O9W—H18W	97.8

O10W—Na1—Cu1	37.12 (6)	Cu1—O9W—H17W	107.5
O7W ⁱ —Na1—Cu1	126.89 (8)	Na1 ⁱⁱ —O9W—H17W	126.6
O9W ⁱ —Na1—Cu1	118.89 (7)	H18W—O9W—H17W	108.9
O11W—Na1—Cu1	36.68 (5)	Cu1—O10W—Na1	93.66 (10)
O2—N1—O1	124.0 (3)	Cu1—O10W—H19W	99.1
O2—N1—C6	118.0 (3)	Na1—O10W—H19W	108.8
O1—N1—C6	117.9 (3)	Cu1—O10W—H20W	118.2
O8—C1—O7	125.5 (3)	Na1—O10W—H20W	119.7
O8—C1—C2	116.4 (3)	H19W—O10W—H20W	114.0
O7—C1—C2	118.2 (3)	Cu1—O11W—H21W	121.0
C7—C2—C3	120.9 (3)	Na1—O11W—H21W	99.5
C7—C2—C1	118.4 (3)	Cu1—O11W—H22W	118.5
C3—C2—C1	120.7 (3)	Na1—O11W—H22W	118.7
C4—C3—C2	119.2 (3)	H21W—O11W—H22W	111.2
C4—C3—C8	119.4 (3)		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*-1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H··· A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O1W—H2W···O4 ⁱⁱⁱ	0.84	2.06	2.883 (4)	166.
O1W—H1W····O5 ^{iv}	0.84	2.19	2.932 (4)	148.
O2W—H4W···O3	0.84	1.94	2.706 (4)	151.
O2W—H3W····O6W ^v	0.84	1.91	2.741 (4)	169.
O3W—H6W····O4W ⁱⁱⁱ	0.84	2.09	2.863 (4)	153.
O3W—H5W…O4	0.84	2.01	2.825 (4)	164.
O4W—H8W····O3W ^{vi}	0.84	2.11	2.868 (4)	149.
O4W—H7W···O3 ^{vii}	0.84	2.12	2.902 (4)	155.
O5W—H10W···O1 ^v	0.84	2.60	3.174 (4)	127.
O5W—H10W···O5	0.84	2.05	2.778 (4)	145.
O5W—H9W···O6 ⁱ	0.84	1.89	2.711 (3)	166.
O6W—H12W···O5W	0.84	2.00	2.810 (4)	161.
O6W—H11W···O7 ⁱ	0.84	1.91	2.716 (4)	160.
O7W—H14W···O2W ^{vii}	0.84	1.98	2.788 (4)	160.
O7W—H13W…O7	0.84	1.87	2.657 (4)	156.
O8W—H16W···O2W ^{vii}	0.84	1.85	2.679 (4)	171.
O8W—H15W···O6W	0.84	1.95	2.774 (4)	167.
O9W—H18W···O5 ⁱⁱⁱ	0.84	1.82	2.647 (4)	168.
O9W—H17W…O6	0.84	1.99	2.823 (3)	175.
O10W—H19W…O5W	0.84	1.85	2.674 (4)	166.
O10W—H20W···O6 ⁱⁱⁱ	0.84	1.88	2.704 (3)	167.
O11W—H22W···O3W ^{vii}	0.84	1.85	2.670 (4)	165.
O11W—H21W···O4 ⁱⁱⁱ	0.84	1.98	2.776 (4)	158.

Symmetry codes: (iii) -*x*+1, -*y*+2, -*z*+1; (iv) -*x*+2, -*y*+2, -*z*+1; (v) -*x*+1, -*y*+1, -*z*+2; (vi) *x*+1, *y*+1, *z*; (vii) *x*, *y*+1, *z*; (i) *x*+1, *y*, *z*.

Fig. 1

Fig. 2

